
Posa in Opera di Lastre Ondulate in Fibrocemento Ecologico

Associazione Nazionale Industrie Manufatti Cementizi

Sezione Fibrocemento

Posa in Opera di Lastre Ondulate in Fibrocemento Ecologico

Il presente opuscolo non è un manuale di progettazione, ma si propone come guida per una corretta e proficua posa delle lastre, nel rispetto della norma UNI 10636 vigente.

Normativa di riferimento:

per le caratteristiche delle lastre ondulate: UNI EN 494:2007

per l'installazione: UNI 10636

per lastre munite di rinforzo longitudinale: UNI EN 15057:2006

Pubblicazione realizzata nell'ambito del

Associazione Nazionale Industrie Manufatti Cementizi

Sezione Fibrocemento

Edizione: 2009

Guida realizzata da:

ASSOBETON - Associazione Nazionale Industrie Manufatti Cementizi

A cura di:

Ing. Franco Pacchioni - Sez. Fibrocemento ASSOBETON (MI)

Realizzazione grafica ed illustrazioni: SGS COMMUNICATION - Reggio Emilia

Indice dei capitoli

Prodotti e componenti

Pag. 4 Capitolo PRIMO

Caratteristiche rilevanti

Pag. 6 Capitolo SECONDO

Resistenza agli urti

Pag. 7 Capitolo TERZO

Posa in opera lastre ondulate in fibrocemento ecologico

Pag. 8 Capitolo QUARTO

Elementi di progetto

Pag. 10 Capitolo QUINTO

Modalita di posa

Pag. 16 Capitolo SESTO

Posa delle lastre sottocoppo

Pag. 22 Capitolo SETTIMO

Ulteriori accorgimenti da tener presente

Pag. 24 Capitolo OTTAVO

Elenco dei piu comuni e frequenti difetti di posa

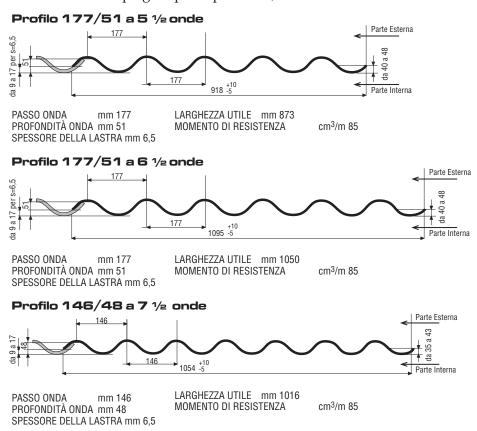
Pag. 25 Capitolo NONO

Manutenzione delle coperture

Pag. 26 Capitolo DECIMO

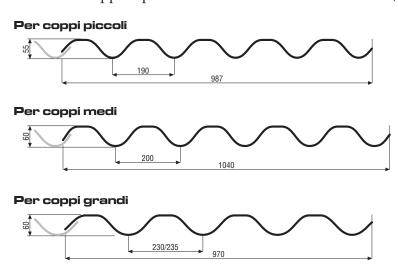
Organizzazione del cantiere

Pag. 27 Capitolo UNDICESIMO


Sicurezza durante i lavori sulle coperture

Pag. 28 Capitolo DODICESIMO

Prodotti e componenti

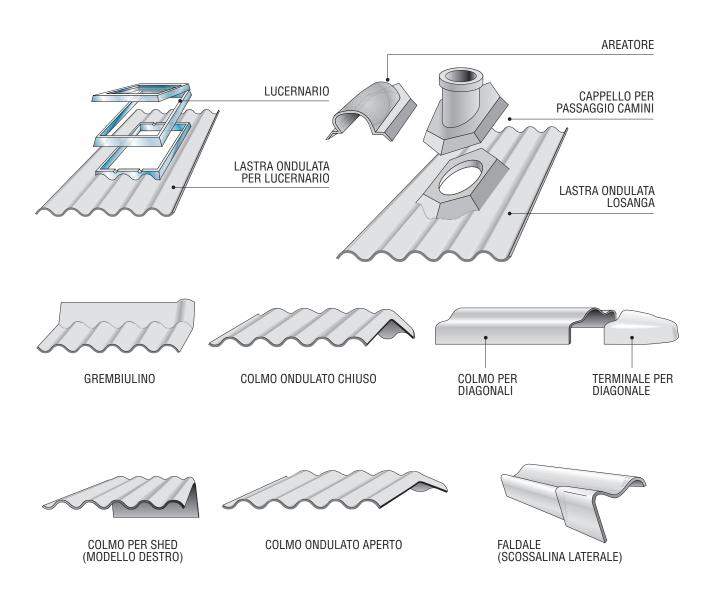

a) LASTRE ONDULATE

Le lastre ondulate in fibrocemento ecologico sono fabbricate e fornite in diversi profili e dimensioni a seconda dell'impiego. I principali sono, secondo UNI EN 494:

b) LASTRE SOTTOCOPPO

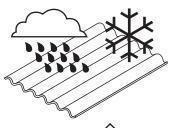
Esistono anche lastre con profilo asimmetrico, destinate ad essere utilizzate come supporto per i coppi, sia nelle ristrutturazioni di vecchi edifici che nelle nuove costruzioni. Esse consentono di risparmiare la metà dei coppi rispetto ad una realizzazione tradizionale, e circa un terzo del peso della copertura.

Per tutte le lastre:


Lunghezze: 1220 - 1250 - 1520 - 1750 - 1830 - 2000 - 2130 - 2440 - 2500 - 3050 mm

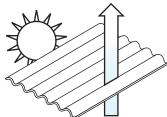
Denominazione delle lastre: secondo UNI EN 494

Carico di rottura minimo: ≥ 425 da N/m


Momento flettente: $\geq 55 \text{ Nm/m}$

Accessori per lastre ondulate

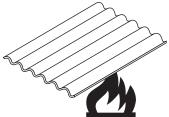
Caratteristiche rilevanti


Tutte le lastre ondulate in fibrocemento ecologico sono qualitativamente rispondenti alla norma UNI EN 494. Da tale rispondenza derivano le loro caratteristiche di impiego, che possono essere riassunte nelle seguenti prestazioni:

PROPRIETÀ DEL MATERIALE

Resistenza agli agenti climatici

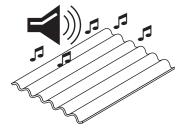
Impermeabile e non gelivo, questo materiale supera i test di influenza climatica (gelo e disgelo)


Proprietà igrotermiche

Permeabile al vapore d'acqua, contrasta la formazione di condensa

Resistenza e leggerezza

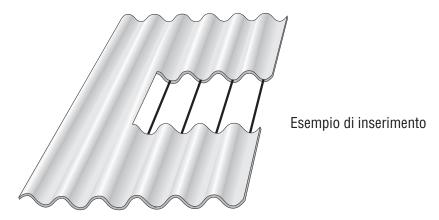
Vanta notevoli vantaggi nella manipolazione e nel montaggio, grazie alla elevata solidità e resistenza agli urti


Incombustibilità

Requisito essenziale richiesto dalle Direttive Europee

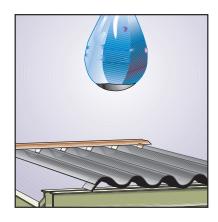
Imputrescibilità

Inerte ai processi fermentativi, non teme gli agenti microbici, vegetali ed animali

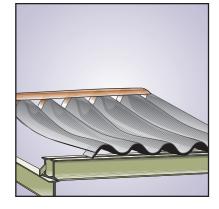

Confort acustico

Favorisce il confort acustico grazie alla sua rimarchevole proprietà di riduzione del livello sonoro

Resistenza agli urti

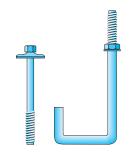

Tutte le lastre ondulate sono caratterizzate dall'inserimento in ogni singola onda di fili o reggette di rinforzo in materiale sintetico.

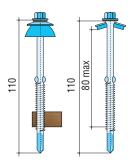
La presenza di tali rinforzi costituisce un notevole progresso in campo antinfortunistico, in quanto se correttamente posate secondo quanto previsto da UNI 10636, le lastre, in caso di rottura accidentale, sono in grado di dare la possibilità alla persona che vi si trovasse sopra occasionalmente, di mettersi in sicurezza.



Esse rispondono alla norma UNI EN 15057: "Lastre nervate di fibrocemento. Metodo di prova per lastre resistenti all'urto."

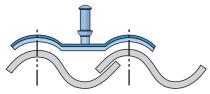
Secondo tale norma le lastre, opportunamente fissate e posizionate alla luce di 1,38 m, devono resistere ad un carico di forma sferoconica del peso di 50 Kg. che cade sulla lastra da un'altezza libera di 1,20 m. Il risultato è positivo se il carico è trattenuto dalla lastra per almeno 1 minuto.


Varie fasi della prova


Posa in opera lastre ondulate in fibroce

SIGNIFICATO DEI TERMINI

Attacchi o fissaggi:

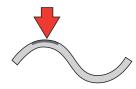

viti per legno o ganci per profilati in ferro e complessi autoforanti che servono a fissare le lastre alla struttura di sostegno

Calibro di posa:


attrezzo che consente di posizionare le lastre contigue in modo corretto

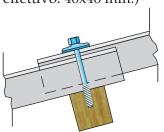
Canale:

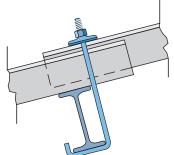
parte inferiore dell'ondulazione



Colmo:

sommità dell'ondulazione

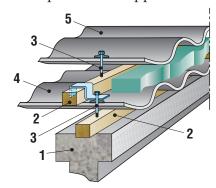



Condensa:

acqua sotto forma di goccioline che si formano in determinate condizioni sulle pareti fredde e proviene dal vapore acqueo presente nell'aria

Correnti:

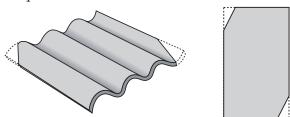
elementi in legno od in ferro fissati alla struttura dell'edificio, sui quali appoggiano e vengono fissate le lastre ondulate. Per i correnti in legno la dimensione nominale minima è di 50x50 mm. (minimo effettivo: 46x46 mm.)



emento ecologico

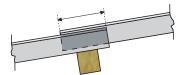
Doppia copertura:

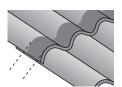
due coperture sovrapposte


- Legenda
- **1** Štruttura
- 2 Listello
- **3** Vite
- 4 Lastra inferiore
- **5** Lastra superiore

Pendenza della falda:

pendenza =
$$\frac{a}{b} \times 100$$


Smussi:


parti di lastre che vengono tagliate per evitare che nei punti di incrocio si sovrappongano gli angoli di quattro lastre

Sovrapposizione di testata:

parte in cui le lastre sono disposte una sull'altra nel senso parallelo alle onde

Sovrapposizione laterale:

parte in cui le lastre sono disposte una sull'altra nel senso perpendicolare alle onde

Ventilazione della copertura:

passaggio di aria sotto le lastre per evitare l'accumulo di condensa

Elementi di progetto

PENDENZA DELLA FALDA E SOVRAPPOSIZIONE DI TESTATA

a) Per lastre di copertura

La sovrapposizione di testata consigliata è tanto più elevata quanto minore è la pendenza della falda, a parità di lunghezza della stessa e di condizioni climatiche.

Essa varia da un minimo di 200 mm. ad un massimo di 300 mm., per pendenze superiori a 8%, come da tabella.

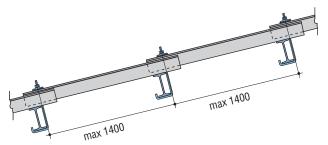
		PENDENZA		
ZONA E ALTITUDINE (m)		8 ÷ 12%	12 ÷ 20%	> 20%
I	< 200	250	230	200
	200 ÷ 500	270	270	230
	500 ÷ 1000	2C	270	230
П	< 200	230	200	200
	200 ÷ 500	250	230	230
	500 ÷ 1000	300	270	230
Ш	< 200	230	200	200
	200 ÷ 500	250	230	200
	500 ÷ 1000	300	270	230

2C = doppia copertura

Per pendenze comprese fra 3% e 8% è consigliabile la doppia copertura; tuttavia per pendenze vicine a 8% ed in condizioni favorevoli è ammessa la copertura semplice con sovrapposizione di 300 mm.

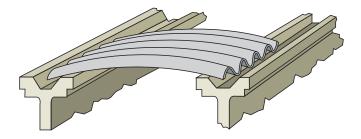
b) Per lastre sottocoppo

La sovrapposizione di testata è normalmente pari a 200 mm., potendo essere eventualmente aumentata fino ad un massimo di 300 mm.

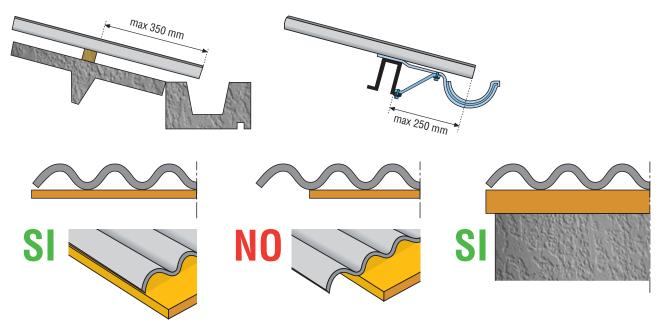


DISTANZA TRA I CORRENTI - SBALZI

La distanza tra i correnti non deve mai superare i valori seguenti, riferiti ai loro interassi:


Caso A - Lastre rette e lastre curve con R > 4 m:

Interasse massimo pari a m 1,40 a condizione che il coefficiente di sicurezza per l'utilizzo delle lastre sia almeno pari a 2,0.


Caso B - Lastre curve con R < 4 m:

L'interasse massimo può essere maggiorato rispetto al valore di cui sopra, a condizione di utilizzare fissaggi idonei a realizzare vincoli alle estremità, secondo quanto indicato a pag. 13.

Parti a sbalzo

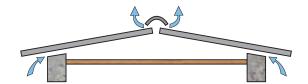
Le parti a sbalzo non devono superare i 35 cm. su soletta ed i 25 cm. sul vuoto, mentre nel senso parallelo alle onde non sono ammesse parti a sbalzo.

Elementi di progetto

VENTILAZIONE DELLA COPERTURA

La ventilazione (ed in misura minore la microventilazione derivante dagli interstizi tra le lastre) è molto importante per:

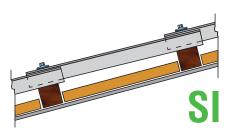
- ridurre o eliminare la condensa e le relative patologie nel sistema coperture
- ridurre la differenza di temperature e di umidità tra la superficie inferiore delle lastre e quella esterna esposta al freddo, causa di dilatazioni differenziali e possibili rotture
- ridurre l'escursione termica delle strutture
- migliorare la durata del materiale
- migliorare il comfort abitativo sia in estate che in inverno

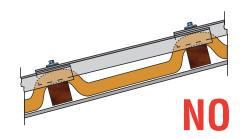

Per maggiori informazioni sull'argomento consultare la norma UNI 10636 - Cap. 5.6 e l'opuscolo Assobeton "La ventilazione delle coperture a falda"

La ventilazione può essere ottenuta come segue:

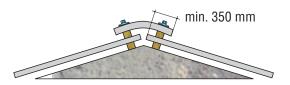
A) Coperture senza isolamento termico

Possono bastare a dare ventilazione i piccoli interstizi tra le lastre (microventilazione); se però essi vengono chiusi, per la presenza di sigillanti, polvere od altro, occorre prevedere aperture per l'entrata dell'aria in gronda ed aperture per l'uscita in colmo, tanto più grandi quanto più bassa è la pendenza della falda.


B) Coperture con isolamento termico


E' sempre opportuno predisporre una serie di aperture in gronda ed in colmo per la circolazione dell'aria.

Se si usano parapasseri, usare quelli che consentono l'entrata dell'aria sotto alle lastre, senza ridurre troppo la sezione di ingresso.


Evitare di appoggiare le lastre sui materassini isolanti, per non impedire la libera circolazione dell'aria sotto alle onde, ma disporre di preferenza i materassini tra un corrente e l'altro.

Evitare ogni operazione (sigillature, ecc.) che possa ridurre l'effetto ventilante.

- Nota 1 La entità delle aperture deve essere tanto più grande quanto più bassa è la pendenza
- Nota 2 Non chiudere mai ermeticamente gli spazi sotto al manto di copertura.
- **Nota 3** Consultare i fabbricanti per gli accessori idonei a realizzare la ventilazione, specialmente sul colmo del tetto.

POSA IN OPERA DI LASTRE CURVE CON RAGGIO § 4 M

Le lastre curve con $R \le 4$ m, dette anche lastre per cupolini, costituiscono un'applicazione assai importante nel campo delle costruzioni prefabbricate.

Al fine di ottenere buoni risultati è fondamentale che esse vengano posate in modo appropriato, rendendo così possibile il superamento delle luci massime di posa indicate per le lastre ondulate dalla norma UNI 10636, e cioè di m 1,40.

Il principio che consente di superare le luci libere di cui sopra è quello degli archi, che resistono a carichi elevati in quanto possono scaricare una parte del sovraccarico sotto forma di spinta orizzontale agli appoggi: è essenziale però che esistano alle estremità delle lastre vincoli tali da configurare la situazione statica di arco a spinta eliminata (totalmente o parzialmente).

Per conseguire tale risultato occorre:

- disporre di vincoli particolari
- verificare che le spinte orizzontali che inevitabilmente si scaricano sulle travi, in particolare quelle laterali o di testata, non provochino inflessioni laterali o spostamenti delle stesse
- realizzare i fissaggi delle lastre con molta cura, in quanto agli stessi è affidato il contenimento delle spinte

Elementi di progetto

Le lastre che vengono fabbricate in Italia sono diverse tra loro per tecnologia di fabbricazione e caratteristiche, per cui non é possibile dare regole di posa che siano valide per qualunque tipo di lastra. Sarà quindi il produttore delle lastre a dare le indicazioni necessarie e sufficienti per la posa al progettista, con il quale potranno essere valutati tutti gli aspetti (statica, vincolo, congruenza con la struttura, sporgenze, ventilazione, antinfortunistica, ecc) della copertura, compreso il tipo di fissaggio.

Occorre tener presente che le lastre curve in fibrocemento, grazie al loro profilo ed alle caratteristiche intrinseche del materiale, posseggono una elevata resistenza globale alla compressione e pertanto sono in grado di comportarsi come arco a spinta eliminata, purché il sistema di fissaggio adottato sia idoneo a contrastare tale spinta.

Il progettista valuterà in base al tipo ed alla rigidezza dei vincoli destinati a contenere la spinta orizzontale, la luce libera massima alla quale possono essere montate le lastre, tenendo presente che, per vincoli che contrastano efficacemente la spinta orizzontale, la luce di cui sopra può raddoppiare a parità di sovraccarico.

Analogamente, l'utilizzo di vincoli a spinta parzialmente o totalmente eliminata, consente un aumento del sovraccarico a parità di luce libera.

Il progettista deve verificare il coefficiente di sicurezza, usualmente non minore di 2.0, applicata ai carichi di rottura indicati dal produttore, per le medesime condizioni di vincolo e di luce libera massima delle lastre in opera.

Ricordiamo che in generale i semplici ganci, che offrono un modesto contenimento delle spinte orizzontali, vengono utilizzati per le luci più basse e che possono essere utilizzati per ottenere efficaci contenimenti i block-up di diametro maggiorato, nonché sistemi più complessi che utilizzano piastre e tiranti.

A prescindere dal tipo di vincolo utilizzato e dall'interasse di posa, in ogni caso rispettando quanto previsto dal D.M. 16/01/96, Prospetto 5.1- Sovraccarichi variabili per edifici - Punto 7 - Coperture, si ricorda che le lastre curve con R<4m non sono pedonabili e che devono essere rispettate le disposizioni contenute nella norma UNI 8088.

Per consentire il transito di attraversamento da una trave a Y ad un'altra occorre perciò precostituire ad intevalli idonei dei passaggi pedonali ed evidenziarli in modo da non creare equivoci.

SPORGENZA DELLE LASTRE SULLE ALI DELLE TRAVI

La lunghezza di queste sporgenze è ricavata dai valori minimi raccomandati dalla norma UNI 10636 ed è riportata nella tabella seguente.

Zona	Altitudine in m.		
	0 - 200	200 - 500	500 - 1000
I	200 - 230	230 - 270	230 - 270
II	200	230	230 - 270
III	200	230	230 - 270

Nota: a parità di zona e di altitudine le sporgenze maggiori sono richieste per le lastre più corte Le sporgenze indicate sono normalmente sufficienti ad assicurare la tenuta all'acqua nelle rispettive zone climatiche.

Nel caso in cui vengano anche richieste:

- la tenuta alla polvere, alla neve polverosa e alla luce
- l'impedimento all'ingresso di animali attraverso gli spazi lasciati liberi dal profilo di ondulazione delle lastre, si dovranno prevedere particolari soluzioni, come, ad esempio:
 - sagome di calcestruzzo incorporate nei getti dei profili alari,
 - sagome di altri materiali elastici da posare unitamente alle lastre.

Tali soluzioni potrebbero essere opportunatamente e correntemente scelte anche al fine di ridurre la lunghezza delle sporgenze riportate nella tabella.

Per ottenere la ventilazione del vano compreso tra la copertura e la soffittatura si dovranno rispettare le lunghezze di sporgenza, prevedere l'installazione di parapasseri, se previsti, permeabili all'aria oppure predisporre aperture di areazione in entrambe le zone di timpano.

UTILIZZO DI LASTRE TRANSLUCIDE PER LUCERNARI

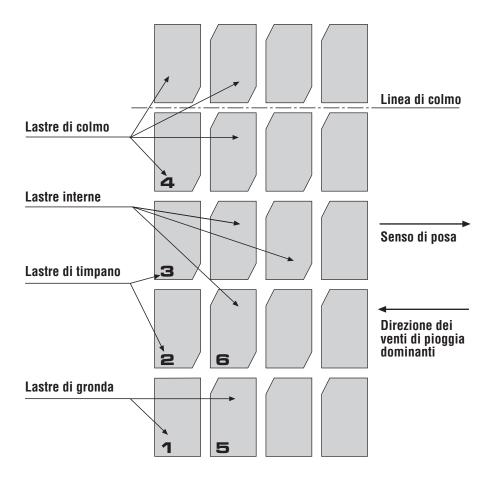
Le lastre più comunemente usate per lucernari sono costituite da PRFV, con ondulazione corrispondente a quella del fibrocemento utilizzato. Esse devono essere rispondenti alla norma prEN 1013 per le caratteristiche prestanzionali specifiche di tale materiale.

Detta norma fissa il peso minimo delle fibre di vetro per metro quadrato, e lo spessore delle lastre (sia lo spessore medio che lo spessore in un punto qualsiasi della lastra) individuando 4 categorie. Ad ogni categoria corrisponde un peso di fibra di vetro, un spessore ed un peso complessivo di lastra secondo la tabella seguente.

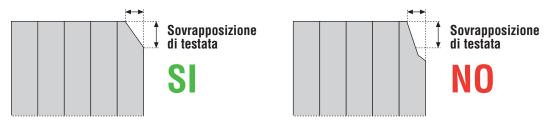
Categoria	Peso fibra/m ²	Spessore mm	Peso lastra kg/m²
1	270	0,8	1,4 - 1,5
2	350	1,0	1,8 - 1,9
3	450	1,3	2,3 - 2,5
4	580	1,7	2,9 - 3,2

Circa l'utilizzo delle varie categorie, riteniamo che esse siano idonee:

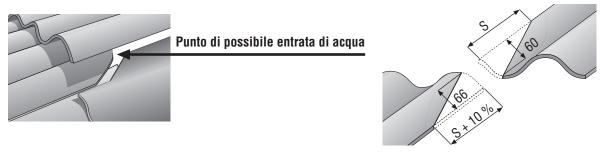
- le lastre di cat. 1 per rivestimenti
- le lastre di cat. 2 per coperture in località di pianura o collinari in zona II e III
- le lastre di cat. 3 per coperture in località di pianura in zona I e di media altitudine in zona II e III
- le lastre di cat. 4 per coperture in località con condizioni climatiche severe


In ogni caso chiedere al fabbricante delle lastre le condizioni di utilizzo, non superare l'interasse di m 1,15 su due appoggi e predisporre sempre sotto alle lastre una rete metallica di protezione antinfortunistica fissata alle estremità in modo sicuro.

Modalită di posa

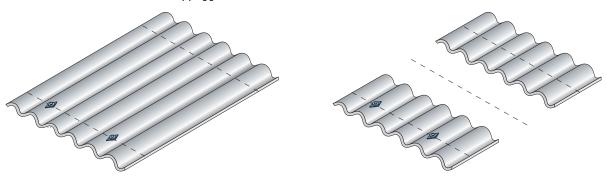

FORMAZIONE DEGLI SMUSSI

Per evitare che gli angoli di quattro lastre si sovrappongano, nei punti di incrocio, **occorre sempre eseguire gli smussi** agli angoli, come indicato nella figura.


NOTA: la numerazione indica la successione di posa. Il senso di posa è contrario alla direzione dei venti di pioggia dominanti.

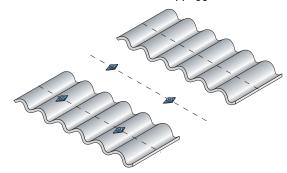
Gli smussi hanno forma triangolare, con lunghezza pari alla sovrapposizione di testata: evitare assolutamente che lo smusso sia più lungo della sovrapposizione di testata, poiché in tal caso si può verificare entrata di acqua.

La distanza che rimane tra una lastra smussata e l'altra deve essere di 5÷6 mm., non di più. Per effettuare gli smussi usare segacci, pinze o tenaglie, avendo cura che il bordo sia regolare.


POSIZIONE E NUMERO DEI FISSAGGI

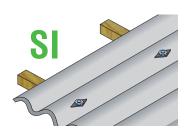
Le lastre devono essere fissate sempre ponendo le viti o i bulloni in corrispondenza di un colmo, mai in corrispondenza di un canale di onda, per evitare il passaggio di acqua attraverso il foro. In condizioni normali si utilizzano due fissaggi. In zone particolarmente ventose è possibile montare rondelle "antivento" da 50x70 mm. senza aumentare il numero dei fissaggi. Per applicazioni in zone estremamente ventose dovrà essere valutato attentamente il numero dei fissaggi in funzione della forza del vento e della resistenza opposta da ogni singolo fissaggio.

Le situazioni più comuni sono rappresentate nello schema seguente.


A - CONDIZIONI NORMALI - 2 o 3 appoggi

B - ZONE VENTOSE - 3 appoggi

C - ZONE MOLTO VENTOSE - 3 appoggi



Modalită di posa

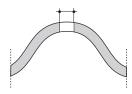
La posizione in cui va effettuato il fissaggio è indicata dal fabbricante. Esso avviene normalmente sulla seconda onda per il fissaggio principale e sulla quinta onda per il fissaggio supplementare.

I colmi vanno fissati con le stesse modalità delle lastre. Il fissaggio intermedio deve essere sulla stessa onda in cui trovasi il primo fissaggio (sul corrente inferiore).

Norme da rispettare inderogabilmente:

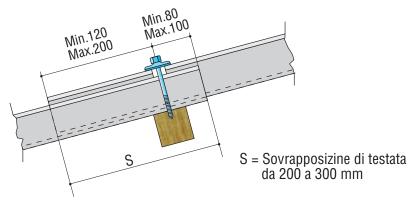
 non sono ammessi fissaggi sulla 3° e 4° onda, salvo sulle lastre sottocoppo a 4 onde
 in caso di necessità di fissaggio sulla 3° e 4° onda in corrispondenza di accoppiamento con lastre trasparenti, si dovrà ricorrere ad elementi che uniscano le lastre, in tali onde, senza vincolarle agli arcarecci d'appoggio.

FORATURA DELLE I


Viene effettuata con utensili che non provochino fessurazioni o screpolature nelle stesse. Il diametro dei fori da praticare deve essere maggiore del diametro delle viti o dei ganci di circa 3 mm.

Per le situazioni più usuali:

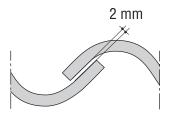
ø vite o gancio: 6 mm.


ø foro: 9 mm.

Diametro vite +3 mm

La posizione in cui vanno effettuati i fori per i fissaggi è quella sopraindicata.

Il foro di fissaggio deve essere sempre posizionato ad una distanza dal bordo di almeno 60 mm. sia per la lastra inferiore che per quella superiore.

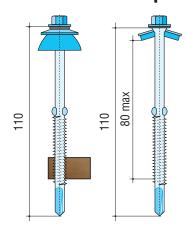


E' assolutamente da sconsigliare la pratica di effettuare i fori "piantando" col martello le viti od i ganci sulla sommità delle onde.

SOVRAPPOSIZIONE LATERALE

Deve essere sempre uguale ad un quarto di onda; per consentire piccoli movimenti tra le lastre contigue, mai sovrapporre un'onda intera.

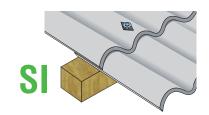
Attenzione: per la stessa ragione, a lastre montate, deve rimanere un gioco di circa 2 mm., che consenta il passaggio della stecca del metro. E' consigliato l'utilizzo del calibro di posa che facilita l'operazione.

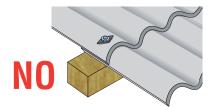

TIPI DI FISSAGGI

I fissaggi, normalmente in acciaio zincato, sono sostanzialmente di tre tipi:

- viti filettate per listelli di legno con rondella e guarnizioni
- ganci di varie forme per profilati in ferro o in lamiera con rondella e guarnzioni
- complessi autoforanti con guarnizione incorporata

Il diametro del gambo della vite o del gancio deve essere di almeno 6 mm.


Posa con complessi autoforanti e avvitamento elettrico



Attenzione:

per tutti tipi di fissaggio, non serrare a fondo per evitare un'eccessiva sollecitazione alle lastre.

Rondelle: disporle correttamente, evitando di utilizzare guarnizioni di plastica anzichè di cartonfeltro bitumato.

Avvitatore elettrico

Questo avvitatore è stato realizzato per l'uso specifico del montaggio delle lastre di copertura. Il suo funzionamento si basa sul distacco automatico dell'azione di avvitamento dei "Complessi autoforanti", evitando di ricorrere alla regolazione della coppia di sforzo, che è sempre un'azione fastidiosa ed incerta, a causa della incostante resistenza dei correnti all'avvitamento.

TIPI DI RONDELLE DA UTILIZZARE

PER FORTI VENTI

NORMALI

Le rondelle in plastica non sono ammesse

SIGILLANTI

Casi di impiego. Si ricorre ai sigillanti in corrispondenza delle sovrapposizioni di testata o di testata e trasversali delle lastre per migliorare il grado di affidabilità di tenuta all'acqua nelle coperture a bassa pendenza che si trovino in condizioni particolarmente difficili. Inoltre si può ricorrere all'uso dei sigillanti nei casi seguenti:

- per migliorare il grado di affidabilità di tenuta all'acqua della copertura, qualora in zone con vento forte portatore di pioggia dominante, il senso di posa delle lastre sia il medesimo dei venti stessi, anziché il contrario;
- qualora si desideri la tenuta della copertura all'aria, alla polvere, alla luce ed alla neve polverosa.

Si deve valutare l'influenza dell'applicazione dei sigillanti sui problemi relativi alla ventilazione delle coperture.

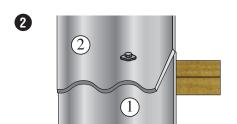
L'impiego dei sigillanti deve comunque essere prescritto dal progettista. I sigillanti devono:

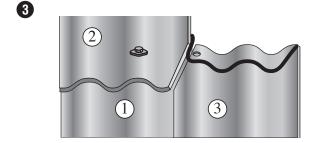
- essere compatibili ed offrire aderenza al fibrocemento ed eventualmente alle lastre usate per l'illuminazione:
- essere flessibili in modo da potersi adattare perfettamente alle lastre;
- essere sufficientemente comprimibili, in modo da deformarsi per il peso della lastra sovrapposta;
- essere tali che una variazione di temperatura non alteri notevolmente la deformabilità;
- mantenere nel tempo la loro funzionalità.

MODALITÀ DI APPLICAZIONE

I sigillanti devono essere applicati su superfici pulite ed asciutte, nelle posizioni indicate nelle figure, che si riferiscono alla posa tradizionale con smusso.

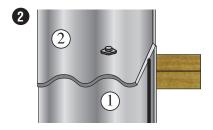
- A) si applica il sigillante alla prima lastra del primo corso verticale, 20 mm circa sotto i fori di fissaggio (circa 80 mm dal bordo superiore);
- B) si posa la lastra n° 2 e quindi tutte le altre lastre del primo corso verticale, procedendo come per la lastra n° 1. Il sigillante deve seguire la linea di smusso della lastra soprastante e quindi rimanere invisibile:
- C) si posa la prima lastra del secondo corso verticale (lastra n° 3 nella figura) con il suo sigillante.


Si procede quindi con la posa delle lastre del secondo e dei successivi corsi verticali.


- A) Si applicano i sigillanti trasversali e longitudinali alla prima lastra del primo corso verticale. Il sigillante longitudinale si applica a circa 10 mm dal bordo della lastra.
- B) Si posa la lastra n° 2 e quindi tutte le lastre del primo corso verticale con il solo sigillante trasversale.
- C) Si posa la prima lastra del secondo corso verticale (lastra n° 3 nella figura) con il suo sigillante trasversale ed il sigillante longitudinale della lastra n° 2.

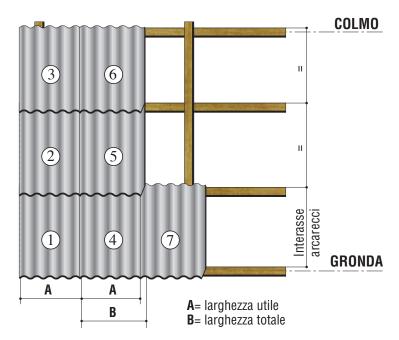
Si procede quindi allo stesso modo per tutte le lastre del secondo e dei successivi corsi verticali.

Posa del sigillante trasversale



Posa dei sigillanti trasversali e longitudinali

Posa delle lastre sottocoppo


Formazione degli smussi

La posa delle lastre sottocoppo deve essere fatta come per le lastre ondulate previa esecuzione degli smussi. Questa operazione è indispensabile al fine di evitare la sovrapposizione contemporanea degli angoli di quattro lastre nei punti di incontro; viene in tal modo assicurata l'impermeabilità della copertura tramite una perfetta sovrapposizione in senso trasversale. Gli smussi sono eseguiti in cantiere prima della posa delle lastre.

Successione di posa

Poiché, i coppi destinati a costituire la copertura finale svolgono una consistente azione di protezione contro il vento, non è necessario stabilire il senso di posa delle lastre in funzione della direzione dei venti di pioggia dominanti. Conseguentemente conviene adottare un unico senso di posa, da sinistra verso destra.

La posa si inizia dal basso della falda, per salire verso il colmo. Posare inizialmente la lastra (1) senza smussi, lasciandola sporgere della misura voluta rispetto all'arcareccio di gronda. Proseguire con le lastre (2), (3), ecc... fino al colmo, quindi riprendere dalla gronda con la seconda fila.

POSIZIONE E NUMERO DEI FISSAGGI

Le lastre devono essere fissate sempre ponendo le viti o i bulloni in corrispondenza di un colmetto, mai in corrispondenza di un canale di onda, per evitare il passaggio di acqua attraverso il foro. In condizioni normali per le lastre interne si utilizza un solo fissaggio per lastra, mentre per le lastre di perimetro due fissaggi (vedere figura di pag.17).

Circa la posizione dei fissaggi supplementari, che varia secondo il tipo di lastra sottocoppo utilizzata, e del tipo di posa delle tegole adottato, seguire le indicazioni del fabbricante.

Per quanto riguarda:
FORATURA DELLE LASTRE
SOVRAPPOSIZIONE LATERALE
TIPI DI FISSAGGI

Fare riferimento a quanto indicato per le lastre ondulate alle pagg. (14-15).

Posa delle tegole o coppi

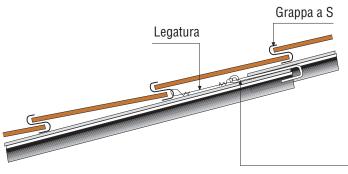

Sono in genere possibili tre tipi di posa delle tegole o coppi:

POSA TRADIZIONALE Coppi "a giunti diritti"

POSA TRADIZIONALE Coppi "a giunti incrociati"

POSA A DUE TEGOLECoppi "a giunti diritti" o "a giunti incrociati"

FISSAGGIO COPPI


Per pendenza dei tetti fino al 30-35% i coppi vengono posati sulle lastre sottocoppo per semplice appoggio. In presenza di pendenze superiori oppure nei casi in cui si debba tenere conto di eventi particolari (presenza di vibrazioni, lunghezza della falda, precipitazioni nevose), si dovrà ricorrere ad altre tecniche di fissaggio, quali aggancio per mezzo di grappe metalliche sagomate o altri sistemi in grado di assicurare adeguata ventilazione tra il coppo e la lastra, e che comunque devono essere permessi dal produttore.

Fissaggio con grappe

Il fissaggio dei coppi si effettua con doppio agganciamento.

- 1. con grappe a "S" che sfalsano i coppi di una stessa fila tra di loro;
- 2. con legatura delle file a livello di ogni sormonto delle lastre sottocoppo.

In aggiunta a questi ganci, solo per le pendenze superiori a 60%, tutti i coppi devono essere incollati. Grappe e legature sono normalmente realizzate in rame.

Grappa di unione alla lastra sottocoppo

Ulteriori accorgimenti da tener presente

- Se viene utilizzato il materassino isolante, non lasciare i sacchi di plastica che l'hanno contenuto sulla soletta e sotto al materassino, perché in quel punto si forma condensa
- Posare l'isolante con continuità, evitando di lasciare spazi liberi che poi si comportano come camini
- Se viene richiesta la posa con sigillante, utilizzare soltanto sigillanti idonei e seguire le specifiche norme
- In caso di riparazioni di lastre incrinate usare siliconi adatti per esterno
- Quando c'è il listello intermedio, non considerarlo un semplice appoggio, ma fissarlo alla struttura sottostante
- Quando, prima del montaggio, si nota una lastra difettosa o semplicemente dubbia, evitare di montarla

Posa in opera di lastre translucide

Le modalità di posa delle lastre translucide in PRFV sono indicate dal fabbricante. Occorre ricordare che:

- il numero dei fissaggi deve essere aumentato predisponendo almeno tre fissaggi per lastra; in zone molto ventose tuttavia può essere utile predisporre un fissaggio per ogni onda
- la sovrapposizione di testata deve essere maggiorata rispetto a quella utilizzata per il fibrocemento
- la sovrapposizione laterale deve essere di 1 onda e 1/4 anzichè di 1/4 di onda come per il fibrocemento

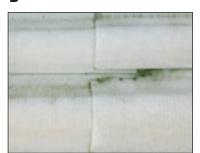
Va tenuto presente che le lastre traslucide di materia plastica sono più deformabili di quelle di fibrocemento e che, pertanto, trasmettono, in parte anche notevole, delle sollecitazioni alle lastre di fibrocemento in corrispondenza delle sovrapposizioni laterali

Come già ricordato, ai fini antinfortunistici predisporre sotto al translucido reti di protezione anticaduta (vedi fotografia)

Elenco dei piu comuni e frequenti difetti di posa

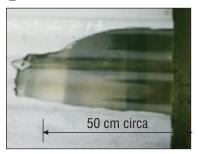
- 1) Smussi mancanti o male eseguiti (foto **A** e **B**)
- 2) Fori di fissaggio troppo piccoli
- 3) Viti troppo tirate
- 4) Viti piantate con il martello
- 5) Posizione errata dei fissaggi
- 6) Gioco insufficiente od eccessivo tra le lastre (foto **C**)
- 7) Ventilazione mancante od impedita
- 8) Materassino che sormonta i listelli
- 9) Parti a sbalzo eccessive (foto **D**)
- 10) Collocazione impropria del pacco (foto **E**)
- 11) Posa translucido non corretta (foto **F**)
- 12) Sovrapposizione laterale translucido non corretta (foto **G** e **H**)

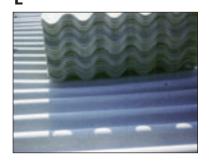
vedere pag 16
vedere pag 18
vedere pag 20
vedere pag 18
vedere pag 17
vedere pag 19


vedere pag 13

vedere pag 12÷13

A


B


C

D

Ε

E

G

Н

Se non si effettua lo smusso sovrapporre 1 onda e 1/4

Manutenzione delle coperture

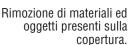
La permanenza nel tempo delle prestazioni solitamente richieste alle coperture realizzate con lastre ondulate di fibrocemento può verificarsi solo se le condizioni di esercizio della copertura sono normali e se la stessa viene sottoposta, a cura dell'utilizzatore, a regolare manutenzione.

Interventi consigliati per una corretta manutenzione delle coperture

Per una buona conservazione nel tempo dell'efficienza di una copertura nel suo insieme e degli elementi che la costituiscono, ivi compresi i sistemi di raccolta e di smaltimento delle acque meteoriche, è necessario effettuare periodici interventi di ispezione ed eventuale manutenzione.

La periodicità degli interventi è legata a diversi fattori, tra cui i seguenti:

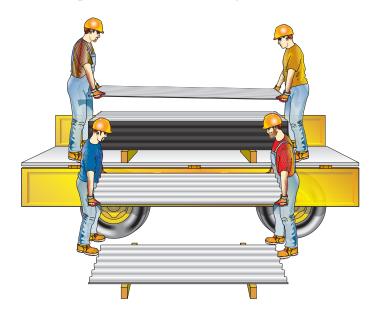
- eventi atmosferici eccezionali;
- localizzazione geografica delle coperture e presenza di forti venti o forti sbalzi di temperatura;
- vicinanza a sorgenti che emettono polveri od inquinanti;
- possibilità di pedonamenti impropri;
- vicinanza di alberi e conseguente possibile accumulo di fogliame;
- presenza di grandi quantità di volatili;
- dimensionamento degli scarichi verticali e orizzontali.


In generale ed in condizioni medie, si può ritenere sufficiente almeno una ispezione ogni anno, con eventuali interventi manutentivi. Nel primo anno può essere utile, tuttavia, effettuare due ispezioni, ed è doveroso altresì effettuare ispezioni alla copertura dopo eventi metereologici importanti.

Coperture in fibrocemento e/o translucido

Ispezione / Verifica	Intervento	
Lastre di copertura non integre (fessurate o rotte)	Sostituire o sigillare	
Colmi, diagonali, scossaline	C.S.	
Serraggio viti e bulloni	Serrare correttamente	
Parapasseri	Pulire	
Presenza di depositi impropri sul fondo delle onde	Asportare e ripulire	
Presenza di oggetti sulla copertura	Eliminare	
Collegamento lucernari fissi o apribili con le lastre	Ripristinare la situazione iniziale	
Presenza di sigillanti non efficienti	C.S.	
Aperture di ventilazione ostruite	C.S.	
Grondaie e scarichi	Pulire	

Accumuli di foglie: pericolo di formazione di dighe ed intasamento dei canali. Utile installazione di una passerella di servizio


Organizzazione del cantiere

Le lastre ondulate sono consegnate in pacchi su pallette di legno. Lo scarico in cantiere deve essere fatto per mezzo di carrelli elevatori a forche oppure con gru provviste di apposite attrezzature, tali da EVITARE CATEGORICAMENTE CHE LE FUNI E LE ALTRE PARTI METALLICHE IMPIEGATE VENGANO A CONTATTO DELLE LASTRE.

Le lastre saranno scaricate e custodite su terreno ben livellato e piano: il responsabile del cantiere dovrà inoltre accertarsi che esse siano legate o reggiate oppure opportunamente caricate con pesi onde evitare che vengano sollevate e spostate dal vento o da altre cause.

Lo spostamento manuale richiede di norma uno o due persone, secondo la lunghezza delle lastre.

Il sollevamento in quota (piano di posa) può essere fatto per pacchi completi a mezzo di gru, osservando le norme precedentemente descritte per le operazioni di scarico.

I pacchi interi saranno appoggiati sulla struttura, previa verifica della capacità di carico della stessa in funzione del peso dei pacchi.

Per piccoli cantieri oppure nei casi in cui non si potrà avere a disposizione una gru, le lastre dovranno essere sollevate una per una o a piccoli pacchi utilizzando idonei mezzi di sollevamento.

Sicurezza durante i lavori sulle coperture

Le lastre ondulate in fibrocemento non sono elementi ai quali accedere direttamente per lavori di montaggio, riparazione, manutenzione o pulizia; pertanto per tutte le attività inerenti la posa si deve circolare e lavorare sui tetti evitando accuratamente di appoggiarsi direttamente sulle lastre; si deve conseguentemente fare uso di pedane, piattaforme, tavole e scale. Ciò anche nel caso di lastre provviste di nastro o filo di rinforzo.

E' inoltre necessario che:

- 1) vengano costruiti parapetti di gronda sull'intero perimetro delle coperture,
- 2) detti parapetti siano pieni in caso di coperture fortemente inclinate,
- 3) si adottino reti provvisorie non metalliche oppure impalcati continui posti ad una distanza massima di 2 metri dal piano di posa,
- 4) allorchè non sia possibile realizzare i suddetti apprestamenti, si faccia uso di cinture di sicurezza con bretelle collegate a funi di trattenuta da agganciare a idonei punti fissi od alle "linee vita" che devono essere predisposte sul colmo del tetto o in altra posizione idonea,
- 5) vengano adottate scarpe con suole antisdrucciolevoli e flessibili,
- 6) si evitino concentrazioni di carichi di persone o materiali,
- 7) si verifichi che l'interasse tra gli arcarecci non superi il massimo consentito,
- B) si eviti di salire su una copertura in caso di pioggia, gelo, o vento forte oppure a raffiche,
- si faccia attenzione al comportamento delle altre persone che per qualsiasi motivo debbano accedere ad una copertura.

La sistemazione di scale, pedane ecc. di dimensione e tipo rispondenti alle descrizioni dei testi ufficiali e delle leggi in vigore, può essere schematizzata, a titolo di esempio, come sopra in figura.

Le norme di sicurezza da osservare per l'accesso alle coperture o per l'esecuzione di lavori sulle stesse sono oggetto della norma UNI 8088.

Gli incaricati previsti dal D. L.vo 494 (Direttiva cantieri)

6 Rete di sicurezza

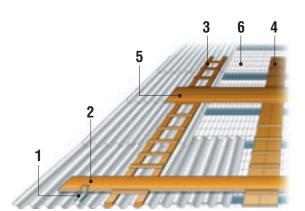
Legenda

Legenda

1 Aggancio di servizio

5 Tavola di circolazione

2 Tavola da posatore 3, 4 Scale da posatore


- 1 Rete antinfortunistica
- 2 Soffittature di materiale translucido
- 3 Lastre di copertura di materiale translucido

1

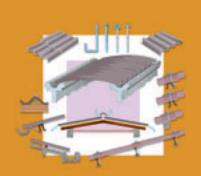
4 Listello

vigileranno ed accerteranno che nei cantieri vengano poste in essere le istruzioni della norma suddetta. Se l'illuminazione avviene mediante lucernari in lastre di materia plastica (PRFV, PVC, PMMA, ecc.) ai fini antinfortunistici si raccomanda di predisporre adeguate reti fisse di protezione da applicare al disotto delle zone di illuminazione attraverso la copertura.

Per ulteriori informazioni sull'argomento consultare l'opuscolo Assobeton "Manuale per la installazione in sicurezza delle coperture".

Aziende associate ad ASSOBETON - Sezione Fibrocemento

BARACLIT SPA - S.S. 71 - Loc. Pianacci, 19 - 52012 Bibbiena Stazione (AR) Tel. 0575 53961 - Fax 0575 536409 - info@baraclit.it


EDILFIBRO SPA - S.S. 10 Km. 164,700 - 27040 Arena Po (PV) Tel. 0385 272811 - Fax 0385 272311 - edilfibro@edilfibro.it

FIBROTUBI SRL - Via Provinciale Sud, 5 - 42011 Bagnolo in Piano (RE) Tel. 0522 956911 - Fax 0522 951606 - fibrotubi@fibrotubi.it

LANDINI SPA - Via Eugenio Curiel, 27/A - 42024 Castelnovo Sotto (RE) Tel. 0522 688811 - Fax 0522 688870 - landini@landinispa.com

CEMBRIT SPA - Via Uccellino, 83 - 44028 Poggio Renatico (FE) Tel. 0532 826111 - Fax 0532 826161 - luca.melotti@cembrit.it

SOCIETA' ITALIANA LASTRE SPA - Via Lenzi, 26 - 25028 Verolanuova (BS) Tel. 030 9920900 - Fax 030 9920884 - info@sil-lastre.com

Associazione Nazionale Industrie Manufatti Cementizi

Sezione Fibrocemento